The free wheel units are fitted so that the main rotor can not drive the engine (torque reversal) in the event of main rotor RPM over-running the engine This occurs during flaring the main rotors and when the engines fail or have been throttled back for practice Autorotation during any critical situation.
There are two main types, the Roller and Sprag type.Some types can be manually selected for ground running without causing any rotation of the rotor systems.
Roller unit
This unit consists of an inner drive from the engine on which is mounted a cam ring and an outer drive to the rotor. Circumferential interposed between the two are caged rollers which act as the driving medium.
When the transmission drive from the engine rotates, the rollers ride up the slopes of the cams and are jammed between the transmission drive shaft and the rotor drive forming a positive coupling between them.
Whenever the rotor overruns the engine the rotor outer drive of the free wheel unit is rotating faster than the inner engine drive thus releasing the rollers from their wedging action and making the rotor side of the transmission independent of the engine side.
will rotate without the engine. The same would happen if the engine stopped.
Helicopter Freewheeling Unit
Freewheeling Diode
The Freewheelin Bob Dylan
Land Rover Freewheeling Hubs
Autorotation is the state of flight where the main rotor system of a helicopter is being turned by the action of air moving up through the rotor as with an autogyro, rather than engine power driving the rotor.
The term autorotation can be traced back to a period of early development in helicopters between 1915 and 1920 and refers to the rotors turning without the engine.
In normal, powered flight, air is drawn into the main rotor system from above and exhausted downward, but during autorotation, air moves up into the rotor system from below as the helicopter descends. Autorotation is permitted mechanically because of both a freewheeling unit, which allows the main rotor to continue turning even if the engine is not running, as well as curved main rotor blades such that when the collective pitch is fully down the inner part of the blade has negative pitch relative to the horizontal plane and can be spun up by the relative wind. It is the means by which a helicopter can be landed safely in the event of complete engine failure. Consequently all single-engine helicopters must demonstrate this capability in order to obtain a type certificate.[4]
The longest autorotation in history was performed by Jean Boulet in 1972 when he reached a record altitude of 12,440 m (40,814 ft) in an AĆ©rospatiale Lama. Because of a −63°C temperature at that altitude, as soon as he reduced power the engine flamed out and could not be restarted. By using autorotation he was able to land the aircraft safely.[
Helicopter Freewheeling Unit,
Freewheeling Diode,
Freewheeling Cycle,
Freewheeling France,
Freewheeling Abingdon,
Freewheeling Edinburgh,
Freewheeling High Wycombe,
The Freewheelin Bob Dylan,
Land Rover Freewheeling Hubs,
Descent and landing
For a helicopter, "autorotation" refers to the descending maneuver where the engine is disengaged from the main rotor system and the rotor blades are driven solely by the upward flow of air through the rotor. The freewheeling unit is a special clutch mechanism that disengages anytime the engine rpm is less than the rotor rpm. If the engine fails, the freewheeling unit automatically disengages the engine from the main rotor allowing the main rotor to rotate freely.
The most common reason for an autorotation is an engine malfunction or failure, but autorotations can also be performed in the event of a complete tail rotor failure or following loss of tail-rotor effectiveness,[6] since there is virtually no torque produced in an autorotation. If altitude permits, autorotations may also be used to recover from settling with power. In all cases, a successful landing depends on the helicopter's height and velocity at the commencement of autorotation (see height-velocity diagram).
At the instant of engine failure, the main rotor blades are producing lift and thrust from their angle of attack and velocity. By immediately lowering collective pitch, which must be done in case of an engine failure, the pilot reduces lift and drag and the helicopter begins an immediate descent, producing an upward flow of air through the rotor system. This upward flow of air through the rotor provides sufficient thrust to maintain rotor rpm throughout the descent. Since the tail rotor is driven by the main rotor transmission during autorotation, heading control is maintained as in normal flight. However, as noted above, there is virtually no torque generated during autorotation, so to maintain flight in a straight line the pilot must keep one anti-torque pedal pressed to eliminate the tail rotor's anti-torque thrust.
Several factors affect the rate of descent in autorotation: density altitude, gross weight, rotor rpm, and forward airspeed. The pilot's primary control of the rate of descent is airspeed. Higher or lower airspeeds are obtained with the cyclic pitch control just as in normal flight. Rate of descent is high at zero airspeed and decreases to a minimum at approximately 50 to 60 knots, depending upon the particular helicopter and the factors previously mentioned. As the airspeed increases beyond that which gives minimum rate of descent, the rate of descent increases again. Even at zero airspeed, the rotor is quite effective as it has nearly the drag coefficient of a parachute[7][8] despite having much lower solidity.
When landing from an autorotation, the energy stored in the rotating blades is used to decrease the rate of descent and make a soft landing. A greater amount of rotor energy is required to stop a helicopter with a high rate of descent than is required to stop a helicopter that is descending more slowly. Therefore, autorotative descents at very low or very high airspeeds are more critical than those performed at the minimum rate of descent airspeed.
Each type of helicopter has a specific airspeed at which a power-off glide is most efficient. The best airspeed is the one which combines the greatest glide range with the slowest rate of descent. The specific airspeed is somewhat different for each type of helicopter, yet certain factors affect all configurations in the same manner. The specific airspeed for autorotations is established for each type of helicopter on the basis of average weather and wind conditions and normal loading.
A helicopter operated with heavy loads in high density altitude or gusty wind conditions can achieve best performance from a slightly increased airspeed in the descent. At low density altitude and light loading, best performance is achieved from a slight decrease in normal airspeed. Following this general procedure of fitting airspeed to existing conditions, the pilot can achieve approximately the same glide angle in any set of circumstances and estimate the touchdown point.
[edit]Autorotational regions
Blade regions in vertical autorotation descent.
During vertical autorotation, the rotor disc is divided into three regions—the driven region, the driving region, and the stall region. The size of these regions vary with the blade pitch, rate of descent, and rotor rpm. When changing autorotative rpm, blade pitch, or rate of descent, the size of the regions change in relation to each other.
The driven region, also called the propeller region, is the region at the end of the blades. Normally, it consists of about 30 percent of the radius. It is the driven region that produces the most drag. The overall result is a deceleration in the rotation of the blade.
The driving region, or autorotative region, normally lies between 25 to 70 percent of the blade radius, which produces the forces needed to turn the blades during autorotation. Total aerodynamic force in the driving region is inclined slightly forward of the axis of rotation, producing a continual acceleration force. This inclination supplies thrust, which tends to accelerate the rotation of the blade. Driving region size varies with blade pitch setting, rate of descent, and rotor rpm.
The inner 25 percent of the rotor blade is referred to as the stall region and operates above its maximum angle of attack (stall angle) causing drag which tends to slow rotation of the blade. A constant rotor rpm is achieved by adjusting the collective pitch so blade acceleration forces from the driving region are balanced with the deceleration forces from the driven and stall regions.
By controlling the size of the driving region, the pilot can adjust autorotative rpm. For example, if the collective pitch is raised, the pitch angle increases in all regions. This causes the point of equilibrium to move inboard along the blade’s span, thus increasing the size of the driven region. The stall region also becomes larger while the driving region becomes smaller. Reducing the size of the driving region causes the acceleration force of the driving region and rpm to decrease.
Remaining part please read in book coming soon
visit :
http://capt-ankisha-awasthi.blogspot.com/
Capt. Shekhar Blog
http://www.capt-shekhar.blogspot.com/
Give your feed back
feedback@beanaviatornotapilot.in